Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2

نویسندگان

  • Hanno Sjuts
  • Mark S. Dunstan
  • Karl Fisher
  • David Leys
چکیده

This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar to other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft genome sequence and characterization of Desulfitobacterium hafniense PCE-S

This genome report describes the draft genome and the physiological characteristics of Desulfitobacterium hafniense PCE-S, a Gram-positive bacterium known to dechlorinate tetrachloroethene (PCE) to dichloroethene by a PCE reductive dehalogenase. The draft genome has a size of 5,666,696 bp with a G + C content of 47.3%. The genome is very similar to the already sequenced Desulfitobacterium hafni...

متن کامل

Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus.

The membrane-bound tetrachloroethene reductive dehalogenase (PCE-RDase) (PceA; EC 1.97.1.8), the terminal component of the respiratory chain of Dehalobacter restrictus, was purified 25-fold to apparent electrophoretic homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 60 +/- 1 kDa, whereas the native molecular mass wa...

متن کامل

Divergent roles of CprK paralogues from Desulfitobacterium hafniense in activating gene expression.

Gene duplication and horizontal gene transfer play an important role in the evolution of prokaryotic genomes. We have investigated the role of three CprK paralogues from the cAMP receptor protein-fumarate and nitrate reduction regulator (CRP-FNR) family of transcriptional regulators that are encoded in the genome of Desulfitobacterium hafniense DCB-2 and possibly regulate expression of genes in...

متن کامل

Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium.

Dissimilatory arsenate-reducing bacteria have been implicated in the mobilization of arsenic from arsenic-enriched sediments. An As(V)-reducing bacterium, designated strain GBFH, was isolated from arsenic-contaminated sediments of Lake Coeur d'Alene, Idaho. Strain GBFH couples the oxidation of formate to the reduction of As(V) when formate is supplied as the sole carbon source and electron dono...

متن کامل

Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195.

Desulfitobacterium strains have the ability to dechlorinate halogenated compounds under anaerobic conditions by dehalorespiration. The complete genome of the tetrachloroethene (PCE)-dechlorinating strain Desulfitobacterium hafniense Y51 is a 5,727,534-bp circular chromosome harboring 5,060 predicted protein coding sequences. This genome contains only two reductive dehalogenase genes, a lower nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2013